
Progressive Acquisition and the RUP Part I:
Defining the Problem and Common Terminology

by R. Max Wideman
 Project Management Consultant

AEW Services

The November 2001 issue of The
Rational Edge contains a perceptive
article by Giles Pitette called
"Progressive Acquisition and the RUP:
Comparing and Combining Iterative
Processes for Acquisition and Software
Development." In this article, Pitette
claims that

Over the last twenty-five years,
the software industry has devoted
much effort to improving the way
software developers construct
information systems for their
customers. In addition to considerable advances in domains
such as programming languages and methods, improvements in
the software engineering discipline have yielded widely accepted
best practices and supporting tools. On the acquisition side,
however, the advances have not been as striking.

But he then goes on to describe a new, progressive acquisition approach
that is more compatible with modern, iterative software development
practices. Based on my years of experience with acquisitions, and working
closely with Rational's Mike Barnard, a Rational Unified Process® expert, I
have formulated some basic tenets of a progressive acquisition approach
that build upon Pitette's groundwork. In the next few issues of The
Rational Edge, I will share these ideas, trying to show how, at a high level,
these tenets integrate with the software engineering methods and
lifecycles of the RUP®. This first article lays the groundwork for the series
by defining the problem space as well as basic terms and concepts that
will enable common understanding of both the problem and possible
solutions.

Problems with the Traditional Acquisition Process

Copyright Rational Software 2002 http://www.therationaledge.com/content/dec_02/m_progressiveAcqRUP_mw.jsp

From a RUP perspective, the business of acquisition by contract (i.e.,
"contracting") introduces a whole new process unto itself, complete with
roles and artifacts. This can be problematic for a typical software
development organization because the traditional acquisition process is
contract driven; and the specialists who direct it focus on activities,
practices, and objectives that run counter to the best interests of
successful software development.

What happens in a traditional acquisition process? Simply put, you figure
out what you want, describe it in a Request for Proposal, solicit bids, pick
a competent vendor with the lowest price and fastest delivery, enter into a
standard legal contract, wait for the work to be finished, and come back
when you can "pick up the keys to the front door." Unfortunately, as often
as not, when you walk through that front door, the entrance hall is not
what you expected, and it might lead directly to the back door!

Until recently, this was the process European countries1 used to acquire
large Defense Information Systems (DISs), and, as Pitette notes:

…there are many sad stories to tell about large DIS projects
procured under classic, strictly sequential, "big-bang" model
(also termed "grand-design" or "one-shot") -- stories about late
deliveries, cost overruns, and failures to meet users' real needs.
The problems stem from the big bang's inherent inability to deal
with a few stark realities.

These "realities" include the following:

● You can't express all your needs up front. It is usually not
feasible to define in detail (that is, before starting full-scale
development) the operational capabilities and functional
characteristics of the entire system.

● Technology changes over time. Acquisition lifecycles for very
large systems (such as DISs) span a long period of time, during
which significant technology shifts may occur.

● Large systems are also complex systems. This means it is
difficult to cope with them adequately unless you have an approach
for mastering complexity.

Actually, based on my experience in software development, the system
does not have to be all that large, or the acquisition lifecycle all that long,
to suffer from exactly the same difficulties. In fact, Pitette might have
added:

● The acquiring authority often fails to stay involved with the
ongoing delivery of work. Typically, this is because fixed pricing
discourages them from doing so. Conversely, some purchasers
breach their contracts by "interfering" too much.

● The acquiring authority is not prepared for the unwieldy
changes that typify software projects.

● The authority may fall short in managing and coordinating
large, parallel acquisition efforts involving multiple
hardware/software suppliers.

Despite all of these shortcomings, the big-bang contract model remains
very popular with executive and senior managers on the acquisition side.
Why? Because they have a responsibility to maintain the financial viability
of their organization. This applies whether the enterprise is government,
private sector, or even non-profit. In assessing the needs of their
organization, and in prioritizing opportunities (even if some system
upgrades are mandated by legislation), managers must know "how much"
in order to budget, estimate return on investment, and select among
competing needs. And for commercial organizations, the question of "how
soon" is usually more important than for those in the public sector.

Unfortunately, senior managers often have little understanding of how
software development is best conducted, and (I hesitate to suggest),
software developers often have little understanding of senior
management's needs. So, there is potential for a serious communication
gap between these two groups within the acquiring organization -- and
often between managers in the acquiring organization and developers on
the supply side as well.

Keeping It Simple

A modern, progressive acquisition process can help bridge these
communication gaps. As I mentioned earlier, the purpose of this series of
articles is to suggest basic tenets of progressive acquisition that integrate
with the software engineering methods and lifecycles of the Rational
Unified Process. Of course, neither suppliers nor acquirers are likely to
take to these suggestions seriously at first, because they run counter to
current practices. But if you keep on doing what you've been doing all
along, then you'll keep getting the same kind of suboptimal results.

In laying out these tenets of
progressive acquisition in future
articles, we will assume an
uncomplicated scenario that meets the
following conditions:

● The system is "complex"; in
other words, it can be developed
progressively and begin
delivering value early on.

● Only one supplier is involved in
delivering the complete system.

● Both the acquirer and the
software system supplier are
using the RUP.

● The main issue is how best to
set up a contract that meets the

The Vocabulary of
Acquistion

One effective way to bridge
communication gaps is to
establish a common
vocabulary among all the
players. Interpreting
terminology is often a problem
within a business unit whose
members are spread far apart,
but it can become a serious
obstacle when you begin to
mix people with totally
different business
backgrounds. Not only do
some terms mean different
things to different people, but

needs of both parties.

Yes, I know, there will be a howl from
those who must deal with multiple
suppliers. That certainly adds risk and
complexity, and it is frequently a
source of conflict and grief. However,
from a project management
perspective, what that boils down to is
simply assigning responsibility for
coordinating, integrating, and
configuring the various parts of the
system in a legal and competent way.

In this first article, we'll define
common terms and concepts that
enable better communication for all
parties involved in acquisition. Then,
future articles will go on to define an
effective core process for acquisition as
well as likely deviations from it. My
hope is that this series will help
organizations to integrate their
software development and acquisition
processes more effectively -- and also
help suppliers who market to software
organizations.

What Does Contracting
Involve?

As we have noted, in a traditional
acquisition process, the legal terms of
a contract drives the activity in a fairly
rigid way. So typically, a lot of energy
goes into reaching agreement on the
terms of the contract. This presents
another communication challenge, as
contracts themselves are very flexible.
They can be devised to reflect any
number of variables, such as:

● The degree of definition for the
thing to be delivered (i.e., the
scope).

● The type of product, whether
tangible as in a good, or
intangible, as in a service or a
product such as software.

● Safety and liability
considerations for the product in

also the same meaning may
be expressed in entirely
different terms. Because I
hope that both developers and
managers -- and both
acquirers and suppliers of
software development
resources -- will read this
article, it is important to
establish shared definitions for
the following key terms.

Acquisition -- The process
of obtaining a system,
software product, or
software service through
contract.2 Also known as
procurement. Although not
specifically stated in the
ISO/IEC 12207 Standard, the
term refers to purchases made
through legal contract.
Sometimes acquisition is
applied in a narrower sense, to
refer to buying an off-the-
shelf, or pre-existing, system
or software, with or without
some degree of customization.
While this is not correct usage,
Figure 1 below shows "off the
shelf software" at the far end
of the customization spectrum
as an example of zero-
customization.

Acquirer -- An organization
that acquires or procures a
system, software, or software
service from a supplier. The
acquirer may also be referred
to as a purchaser, buyer,
customer, or owner. The
acquirer may or may not also
be the "user." Generally, users
are a subgroup interested
primarily in the software's
capability and ease of use,
whereas the acquirer is more
concerned with cost and
delivery schedule, given
agreement on the
functionality.

Contract -- A binding

use.

● The urgency or specific
timetable for product delivery.

● The price to be paid upon
delivery of the product, as well
as financial incentives or
penalties tied to specific
benchmarks.

● The degree of control to be
exercised by either party to the
contract.

● The degree of tolerable risk,
internal and external, and who
should assume which risks.

Part III of this series, "Working with
Traditional Contracting Practices," will
explore these variables in greater
detail.

Modern contracts for software
acquisition should reflect the notion
that initial plans for a software system
are not monolithic and ironclad. The
RUP focuses on an iterative approach
and delivery of value as the most
effective, efficient, and least risky
means of developing software.
Similarly, the PA processes developed
and articulated by European
governments have shown that
iteratively acquiring and implementing
system functionality is a much more
effective approach than purchasing a
complete system all at once, as in the
"big-bang" model.

Software acquisition contracts should
also recognize the high degree of
variability in software "products." In
fact, the actual software deliverable
and its corresponding contract can fall
anywhere along a continuum of a
number of semi-interdependent
variables. Figure 1 displays three
major variables that I will discuss,
along with several others, in a later
article.

agreement between two
parties, especially enforceable
by law, for the supply of
software service or the supply,
development, production,
operation, or maintenance of a
software product.3 This is a
binding agreement that
establishes the requirements
for the products and services
to be acquired.4

The ISO/IEC 12207 Standard
definition also suggests that a
contract may be "a similar
agreement wholly within an
organization." Generally, no
form of agreement is
enforceable by law unless the
parties are operating "at arm's
length" -- in other words, they
are entirely independent of
one another. However, large
corporations may wish to
establish internal agreements
similar to legal ones as a
matter of operational policy,
and the extent to which they
are enforceable by law
depends on the relationship
between the parties. Note that
contract law labels the parties
to a contract as buyer and
seller.

Progressive Acquisition
(PA) -- A strategy to acquire
a large and complex system
that is expected to change
over its lifecycle. The objective
of PA is to minimize many of
the risks for both parties
associated with the length and
size of software projects. The
final system is obtained by
upgrades of the system
capability through a series of
evolutionary, operational
increments.5

Subcontractor -- A second
and distinct party to which a
primary contractor passes
some portion of work

described in the contract. This
term is sometimes used
incorrectly to describe the
awarding of several contracts
by the acquiring organization.

Supplier -- Any organization
that supplies services or goods
to the customer. Also known
as a contractor, seller,
subcontractor, or vendor.

Figure 1: Major Variables Affecting Software Acquisition

Given the highly variable nature of these deliverables, determining an
appropriate form of compensation is a major factor in formulating the
contract -- and hence the relationship between the parties.

The Project Management Institute's PMBOK® Guide describes the following
traditional contract/compensation options.7

● Fixed Price (or lump-sum) contracts. This category of contract
involves a fixed total price for a well-defined product. Fixed-price
contracts may also include incentives for meeting or exceeding
selected project objectives, such as schedule targets.

● Cost-reimbursable contracts. This category of contract involves
payment (reimbursement) to the contractor for its actual costs.
Costs are usually classified as direct costs (costs incurred directly by
the project, such as wages for members of the project team) and
indirect costs (costs allocated to the project by the performing
organization as a cost of doing business, such as salaries for
corporate executives). Indirect costs are usually calculated as a

percentage of direct costs. Cost reimbursable contracts often
include incentives for meeting or exceeding selected project
objectives, such as schedule targets or total cost.

● Time and material contracts. Time and material contracts are a
hybrid type of contractual arrangement that contains aspects of
both cost-reimbursable and fixed-price-type arrangements. Time
and material contracts resemble cost-type arrangements in that
they are open ended, because the full value of the arrangement is
not defined at the time of award. Thus, time and material contracts
can grow in contract value as if they were cost-reimbursable type
arrangements. Conversely, time and material arrangements can
also resemble fixed-unit arrangements when, for example, the units
rates are preset by the buyer and seller, as when both parties agree
on the rates for the category of "senior engineers."

The supporting text in the PMBOK Guide also describes six major
procurement management processes: Project Procurement Management,
Procurement Planning, Solicitation Planning, Solicitation, Source Selection,
Contract Administration, and Contract Closeout.

However, these classifications are too limited; they reflect a traditional
procurement paradigm, not a progressive acquisition approach. The
challenge for RUP users is to devise a new approach that speaks to all
players in terms they can understand, while at the same time remaining
consistent with the RUP philosophy and methodology.

Next month, in Part II of this series, we will take a look at an actual
acquisition process and discuss how to make it work in a way that is
compatible with RUP recommendations for software development.

Notes

1 ISO/IEC 12207 International Standard, Section 3: "Definitions."

2 "Software Acquisition Capability Maturity Model," Appendix B: Glossary of Terms. Software
Engineering Institute, 1999.

3 ISO/IEC 12207 International Standard, Section 3, "Definitions."

4 "Software Acquisition Capability Maturity Model," Op.Cit.

5 Giles Pitette, "Progressive Acquisition and the RUP: Comparing and Combining Iterative
Process for Acquisition and Software Development," The Rational Edge, November 2001.

6 "An Abridged Glossary of Project Management Terms" (Rev.4) in the Association of Project
Management (UK) APMP Syllabus, second edition, 2000.

7 A Guide to the Project Management Body of Knowledge, 2000 edition. Project Management
Institute (USA).

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

	rational.com
	The Rational Edge -- December 2002 -- Progressive Acquisition and the RUP Part I: Defining the Problem and Common Terminology

